TreesMedium
Complete Guide to Tree Algorithms: Traversals, Construction, and More
Comprehensive coverage of tree data structures, including DFS, BFS, tree construction, and common interview problems.
December 5, 2024
16 min read
TreesDFSBFSData Structures
Complete Guide to Tree Algorithms: Traversals, Construction, and More
Trees are fundamental data structures in computer science. Mastering tree algorithms is essential for technical interviews.
Tree Traversals
Inorder Traversal
Left → Root → Right
def inorder(root):
if root:
inorder(root.left)
print(root.val)
inorder(root.right)Preorder Traversal
Root → Left → Right
def preorder(root):
if root:
print(root.val)
preorder(root.left)
preorder(root.right)Postorder Traversal
Left → Right → Root
def postorder(root):
if root:
postorder(root.left)
postorder(root.right)
print(root.val)Level-Order Traversal (BFS)
from collections import deque
def level_order(root):
if not root:
return []
result = []
queue = deque([root])
while queue:
level_size = len(queue)
level = []
for _ in range(level_size):
node = queue.popleft()
level.append(node.val)
if node.left:
queue.append(node.left)
if node.right:
queue.append(node.right)
result.append(level)
return resultCommon Tree Problems
1. **Maximum Depth:** Find the deepest node
2. **Symmetric Tree:** Check if tree is mirror of itself
3. **Path Sum:** Find paths with target sum
4. **Lowest Common Ancestor:** Find shared ancestor
Trees are everywhere in algorithms - master these patterns!
Related Articles
Graphs
Explore depth-first search and breadth-first search algorithms with visual examples and implementation details.